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ABSTRACT 

We discuss the use of elliptic curves in cryptography. In particular, we propose an analogue of the 
Diffie-Hellmann key exchange protocol which appears to be immune from attacks of the style of 
Western, Miller, and Adleman. With the current bounds for infeasible attack, it appears to be 
about 20% Faster than the Diffie-Hellmann scheme over GF(p). As computational power grows, 
this disparity should get rapidly bigger. 
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INTRODUCTION 

Elliptic curves have been objects of intense study in Number Theory for the last 90 years. TO 
quote Lang “It is possible to write endlessly on Elliptic Curves (This is not a threat).” [l]. Re- 
cently [2 ] ,  H.W. Lenstra has proposed a new integer factorization algorithm based on the arith- 
metic of elliptic curves, which, under reasonable hypotheses, runs at  least as fast as the best 
known factorization algorithm, and uses a negligible amount of storage. This has obvious impli- 
cations for cryptographic techniques depending on the difficulty of factoring. It is my intent to 
show that elliptic curves have a rich enough arithmetic structure so that they will provide a fertile 
ground for planting the seeds of cryptography, 

NOTATION AND RESUME OF PROPERTIES OF ELLIPTIC CURVES 

If S is a finite set, we  denote its cardinality by I S 1 . If p is a prime number, and n # 0 is an inte- 
ger, we denote by v,(n) the exact exponent of p dividing n. If a = b /c  is rational, then we set 

v,(a) = v,(b) - vp(c). As usual. Q denotes the rational numbers, and Z denote the integers. If 
n # 0 is an integer, let Q(”) denotes the subring of Q consisting of elements whose denominators 
are relatively prime to  n. If u denotes a set of primes then let Z, denote those rational numbers 
whose denominators are divisible only by primes in U. Note that if no prime in u divides n , then 
Z, is a subring of Qw. 

in x;, . . , , x, , with coefficients in R : 
An (affine) algebraic group defined over a ring R is a set of simultaneous polynomial equations 

along with a composition law, and inverse given by n polynomial functions with coefficients in R. 

which satisfies the usual axioms for a group. If G is an algebraic group, and S is a ring which has 
a multiplication by elements of R defined, then G ( S )  denotes the set of solutions to the polynomial 
equations with the variables having values in S. The law of composition given above then makes 
G ( S )  into a group. We also may have a projective algebraic group with the same definition as 
above, except that the polynomials must be homogeneous of the same degree. In this m e  G(S) 

denotes the set of solutions all of whose coordinates are not zero, with two solutions being con- 
sidered the same if one is a scalar multiple of the other. Note that in this case, the law of compo- 
sition really consists of a set of rational functions. 

As an example, we have the multiplicative group: 

G,: xy= 1 
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with law of composition ( ( x i ,  yl),(%,y2)) + (x,%, y ~ y ~ )  and inverse (xp) -. bj). 
Define the logarithmic height of a point: Given a point P = (x,, 5, . , . , x,) with rational coor- 

dinates, let D be a common denominator for all the x, such that, there is a j such  that (Dx,, D )  = 1 

. The logarithmic height, h(P)  = log max( I D I ,  I Dx, I , . . . , I Dx, I ) . This height is a measure 
of the number of bits needed to  write down the point P. Let H,(K) = IP E Q” I h ( P )  5 a. 

Let p, denote the i-th prime number, and G,(r) be the subgroup of G,(Q) generated by 
Note that G,(r) is the same as C,(Z,) where o consists of the set of primes p l .  . . . , p ,  . 

p, .  . . . , p,.  Also let GJr, Kj = G,( t )nH2(K)  
An elliptic curve d e f i e d  over a field F is the curve defined by the following equation: 

3 E : y 2 = x  + m + b  

where (I and b are  elements of F (assumed to have characteristic # 2 or 3. There is a slightly more 
complicated formulation in those cases.). There is a natural law of composition on the points of 
E obtained by the “tangent and chord method”: Given two points P and Q, the straight line con- 
taining them intersects the curve in a third point R (if P = Q take the tangent to the curve a t  P). 
Define P + Q as being the point ( x ( R ) ,  - y (R) ) .  This provides a commutative and associative law 
of composition, whose zero element is the point a t  infinity: (w, W) We denote the set of points 
(including the point a t  infinity) of the curve E with coordinates in the field F by E(F) The 
discriminant of the curve A = 16(4aJ - 27P) . The elliptic curve 

3 4  6 E A : y 2 = x  + i \ a r + h b  

is isomorphic to the curve E above by the substituion 

We say the E is minimal if u and b are integers, and there is no integer h # 2 1 such that A‘ I u and 
AS I b. Clearly, every elliptic curve is isomorphic to a minimal one. We denote the discriminant of 
the minimal curve isomorphic to E by Amin. There is a slightly more general definition of minimal 

by using a more complicated model for an elliptic curve (see [ 11). Its value of A,, differs by a 

factor dividing 24, from the one described above. 
To calculate multiples of a point P = ( x y )  we may use the following recurrences (see Lang [l], 

p. 37): 
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Then 

Using the above recursions we may calculate the coordinates of the above point in 26 log,n multi- 
plications. 

We let F, denote GF(q), the finite field with q elements. We now state a few results for elliptic 
curves which are  needed for the discussion in the next section. Two good general references for 
elliptic curves are Cassels [l l] and Lang [ 11. All of the results quoted below are contained therein, 
unless indicated otherwise. The number of points, I E(F,) I = p + 1 - ap where I ap I I 2 4 T  (the 

"Riemann hypothesis for finite fields" proved by Hasse in 1931 for Elliptic curves). The 
Mordell-Weil theorem states that the rank of the free part of the group E(Q) is finite (lor any 
specific E). In fact it is usually quite small. Indeed, no one to date has been able to find an elliptic 
curve with rational coefficients whose rank is greater than 14 (this record is held by J-F Mestre, 
see 1121 for a description of a rank 12 case). 

A fundmental theorem of Neron and Tate (see [ 11) is that there exists a unique positive semi- 
definite quadratic function h (P) such that for all P E E(Q) (even on E ( M )  where M is a number 
field) such that 

The O(1) is quite small, even being bounded by log max( I a 1 . 1 b I ) (see Zimmer I1.51). In fact this 
bound always seems to  be much too large (see [16]). We also have h (P) = 0 if and only if P is a 
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point of finite order (of which there are a t  most 16, by a theorem of Mazur). The meaning of 
h (P) being a quadratic function is that 
A 

is a positive definite inner product. If P,, . . . , P, is a basis for the points of E ( Q )  of infinite order, 
we define the regulator to be 

R = det(<P,, P,>) 

This value is independent of the basis chosen. We also define ~ P !  = m. In this case 
< P , b  = 1 / 2 h ( P ) .  

KEY EXCHANGE, AND DISCRETE ELLIPTIC LOGARITHMS 

The Diffie-Hellman key exchange protocol (31 was proposed to allow the agreement on a secret 
key between two parties communicating over an insecure channel. It operates as follows: A large 
primep and a primitive root g of p are made public. Party A chooses an exponent a between 0 and 
p - 1 at random. Party B does the same with an exponent b Party A transmits go to B, and vice- 
versa. Both parties agree on gb. The security of this protocol rests on two unproven (but reason- 
able) assumptions: 
1. Any method of obtaining Fb from go and g* would be as hard as obtaining a from g‘ (taking 

“discrete logarithms”). 
If p - 1 did not have only small prime factors, that finding discrete logarithms was intractible 
(i.e. could not run in time polynomial in logp) .  

2. 

Neither assumption has been disproven. However, Western and Miller [4], and Adleman [51 have 
come up with algorithms for the discrete logarithm problem which run in time Up), where 

In addition, Pohlig and Hellman [ 171, and Pollard [ 181 have a method for calculating discrete log- 
arithms, depending only on the fact that  we are working in a group, which runs in time O ( g )  
where p‘ is the largest prime factor of p - 1. Given current processing speeds, this escalates the 
size of the prime p which must be used. in order to make this method more secure. A figure of 

~ - 2 ” ~  seems to  be necessary. 
The above protocol really only uses the property that we are working in a group. As stated 

above, the points on an elliptic curve have the structure of an abelian group. Thus we may make 
the analogous constructions over elliptic curves. We shall briefly describe the “Index Calculus” 
algorithm of Adleman, and Western and Miller, and give arguments why such an algorithm is not 
likely to work on elliptic curves. We have the reduction map: 
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Let prob(r1 = I G&, log 6 / 2 1  I /(p - 1). This is the probability that an element of the multipli- 
cative group is in the above image. As r increases to 9 r ( 6 / 2 ) ,  prob(r) increases to 1. 

The “index calculus” method fixes a value of r, and chooses elements a E F, at random until 
there is x E G,,,(r, log 6 / 2 1  such that X = g“. The probability of that succeeding is prob(r). To 
each such successful test we have a n  equation 

a = vole + . . . + v,lr mod p - 1 (1) 

where 

and 1, is such thatp, = g‘k mod p - 1 where po = - 1. Evidently, we have lo = (p - 1)/2. We need 
to generate r such independent equations. Once we have accumulated them, we may solve for the 

4. 
Given z E F,, we find 1 such that z = g’ as follows: Choose a rnodp - 1 at  random until there 

exists x E GJr ,  log 6 / 2 )  such that X = zo. Then 

where 

x = p2pl” . . . p:‘ 

We may then solve for I .  Each such test has probability prob(r) of succeeding. 
There is a trade-off between increasing r in order to make prob(r) bigger (in order t o  decrease 

the expected number of tests to  make), and in decreasing r in order to make the calculation of the 
decomposition (2) faster, and of solving a smaller system of equations. Fortunately, good algo- 

rithms exist for both the latter problems. Using the new factorization algorithm of Lenstra [ 2 ] ,  

we may find the decomposition (2). or signal failure, in time 

o(L(p)G 

where 
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The equations (1) are provably sparse, namely a t  most logp of the Y, are # 0, because pl . . .p,=e' 

by the prime number theorem. We may solve these equations in random time O(i- log'p) by the 

algorithm of Wiedemann [13]. It is evident that this last figure is the big bottleneck in trying to 
maker larger. It turns out that the optimum trade off is made by letting r = L(P)'l2 for some small 
constant c between 3/2 and 2. Recently, 
Coppersmith, Odlyzko, and Schroeppel have devised a slightly more complicated variant of the 
above, which has the above running time with c = 1. 

The total running time turns out to be L(p), . 

The reason why the above algorithm works so well, is that there are lots of free generators for 
the group Gm(Qe,), which have fairly small heights. If one tries to use an analogous method with 
elliptic curves, one immediately runs into the barrier of the Mordell-Weil Theorem (see above). 
We show below, that this finititude of the rank combined with other estimates, that it is extremely 

unlikely that an "index calculus" attack on the elliptic curve method will ever be able to work. 
We may view E(Q)@R as an r-dimensional inner product space, with the inner product given 
above, which contains E ( Q )  as a lattice, whose fundamental domain has volume 6. Thus, 

where V ,  is the volume of the r dimensional sphere of radius 1. Thus, unless the rank of the curve 

can be made very large, and the regulator made fairly small, the probability of a point of E(F,) 
lifting to  a point on E ( Q )  whose height is bounded by something reasonable (say a polynomial in 
logp ) is vanishingly small. In particular, in order to make the probality of finding a point with a 

specified height < p" it is necessary to  make K = Q@(l-.)/'). That is we must compute points 
whose coordinates are represented by rational numbers whose length is exponential in log p .  That 
is rather a daunting prospect! 

Despite the remarks above about it being difficult to find curves of large rank, it is widely be- 

lieved that there is no bound on the rank attainable. However, it is also true that rank 
(E(Q)) = O( log max( I a 1 ,  I b I )). This shows that the size of the coefficients needs to  be expo- 
nentially larger than the rank. This would seem to preclude high rank from the point of view of 
computational complexity. In fact, the  above bound is really quite bad, which would tend to 
make the situation much worse from the point of view of computational complexity. As far as a 
lower bound on the regulator, Lang has conjecturcd [ 11, and Silverman proved [7](in some cases) 
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A A 

that if h (P) # 0 that h (P) > c1 log I A,, I + c, for some constants c,. This estimate is even true 
over algebraic number fields, with the constants depending on the field. Laurent [8] gives a pre- 
cise lower bound for the constant c, , if one has c,= 0 (this only make c, larger ), of 
cJ(D( log log DI3) where D is the degree of the field above Q and c, is an absolute constant inde- 
pendent of the curve and the field. These estimates say that the regulator can’t be too small, as 
long as u and b can’t get too big. This remark would seem to preclude an attack which tries to  look 
at  points in E ( M )  for some finite field extension M of Q. 

Even if one could somehow get around the barrier mentioned above there is still the problem 
of actually lifting a point. In the original case of G,  it is trivial, or nearly so. In the case of a n  el- 
liptic curve it seems to  be much more difficult. If we are given a point (xa) c E(F,) and some 
point (x,,y,) c E(Z/p‘Z)  which projects to the original point, we could find a rational point (X, Y) 
whose height is bounded by k logp - log 8 by an integer basis reduction algorithm ( L’ or 
Kannan) in the 3 dimensional lattice generated by the vectors 

However, there are many possible choices for (xl,y,), about pk’’ of them. Furthermore, even 
though they are parametrizable, the parametrization is non-linear. Thus, unless there is a new 
idea, it would seem that this is another barrier, difficult to surmount. 

hPLEMENTATlON AND PRACTICE 

A number of details need to be addressed in order to make this scheme practical: 

1. 

2. 

3. 

4. 
There are two possible algorithms that one could use for multiplying a point by a n  integer: the 
recursion cited above, or repeated use of addition and doubling with the binary method for mul- 
tiplication. In either algorithm, it appears to be best to represent the points on the curve in the 
following form: Each point is represented by the triple (xy;) which corresponds t o  the point 
(x /z2,y/z3) .  This is a homogeneous representation with x having weight 2 , y  having weight 3, and 
z having weight 1. If this representation is used with the recursions in the first section, then it is 
easily checked that the only change is in the initialization. A simple induction shows that gZn has 
weight 4n2 - 4, and that g,,,, has weight 4n2 + 4n. 

The actual algorithm for multiplication on an elliptic curve 

The choice of the parameters A and B for the elliptic curve. 

The choice of the prime modulus p .  

What information needs to  be transmitted. 
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In order to  be secure from the Pohlig-Hellmann (or Pollard) algorithm, it is necessary that NP, 
the number of points of E in F, have a prime factor > p a  , for a as close to  1 as possible. This is 
made possible by the algorithm of Schoof [ 191, which calculates N, in time polynomial in logp. In 
general it is not hard to  find such good p .  Theoretically, the best result known is one of Fouvry 
[20]: For any fiied non-zero integer a ,  a positive proportion of primes p have the property that 
the largest prime factor of p + u is 2 p 6  where 8 = 0.6687. 

Instead of using the Schoof algorithm, when searching for a goodp, I have taken the following 
approach: Choose the curve to  be: 

where a is not a perfect square. This curve has complex multiplication by fi, and there is a n  
exact formula for N, (see [lo]). In the casep = 3 mod 4 we have N, = p + 1. This is the so-called 
“supersingular” case. In this case we know even more. It is well known (see [I]) that any field 
containing the coordinates of all points of order 1 also contains the I-th roots of unity. This shows 
that a necessary condition for group of point over F, to contain a subgroup isomorphic to 
Z/lZ x Z / l Z  is that I ( p  - 1 . Because the number of points in the supersingular case is p + 1 we 
have 2 as the only possibility for 1. But, in our case, this happens if and only if, a is a quadratic 
residue modulo p .  To sum up, in the case above the group of points modulo p is of order p + 1, 
cyclic in the case (u /p )  = - 1, and a product of a cyclic group of order 2 and a cyclic group of or- 
der (p + 1)/2 when ( a / p )  = 1. 

The above choice of curve was taken for convenience in calculation. However, it may be pru- 
dent to avoid curves with complex multiplication because the extra structure of these curves 
might somehow be used to give a better algorithm. 

Finally, it should be remarked, that even though we have phrased everything in terms of points 
on an elliptic curve, that, for the key exchange protocol (and other uses as one-way functions), 
that only the x-coordinate needs to be transmitted. The formulas for multiples of a point cited in 
the first section make it clear that the x-coordinate of a multiple depends only on the x -coordinate 
of the original point. 
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